Sự ổn định của hệ phương trình vi phân đại số với ma trận hệ số phụ thuộc tham số thời gian - pdf 16

Download miễn phí Luận văn Sự ổn định của hệ phương trình vi phân đại số với ma trận hệ số phụ thuộc tham số thời gian



MỤC LỤC
Trang
Mở đầu . . . 2
Chƣơng I Một số khái niệm về hệ phƣơng trình vi phân đại số . 5
1.1 Phép chiếu - Chỉ số của cặp ma trận . . 5
1.2 Hệ phương trình vi phân đại số tuy ến tính với hệ số hằng . 7
1.3 Phân rã hệ phương trình vi phân đại số thành hệ phương trình
vi phân th ường và hệ phương trình đại số . . 10
1.4 Sự ổn định (Lyapunov) c ủa hệ phương trình vi phân đại số. 13
Chƣơng II Bán kinh ổn định của hệ phƣơng trình vi phân đại số
tuyến tính với ma trận hệ số hằng . . 15
2.1 Bán kính ổn định phức của hệ phương trình vi phân đại số . 15
2.2 Liên hệ giữa bán kính ổn định thực và bán kính ổn định phức
của hệ phương trình vi phân đại số . . 24
Chƣơng III Bán kính ổn định của hệ phƣơng trình vi phân đại
số tuyến tính với nhiễu động . 34
3.1 Hệ phương trình vi phân đại số tuyến tính với hệ số bi ến thiên 35
3.2 Nghiệm yếu và các khái niệm ổn định . . . 37
3.3 Công thức bán kính ổn định . . 44
3.4 Các trường hợp đặc biệt . . 55
Kết luận . . . 59
Tài liệu tham khảo . 60



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
19
Khi đó tồn tại
pu 
:
1u

0 0G s u G s
. Theo một hệ quả của định
lý Hahn-Banach, tồn tại một phiếm hàm tuyến tính
*y
xác định trên
*: 1q y

*
0 0 0 .y G s u G s u G s
Đặt 1
*
0 .
p qG s uy 
Rõ ràng,
1 1
*
0 0 0 0 0.G s u G s uy G s u G s u G s u
Vì vậy, 1
0G s
. Mặt khác, từ 1
*
0G s uy
ta có 1
0G s u
.
Kết hợp hai bất đẳng thức ta có 1
0 .G s
Hơn nữa, từ
0G s u u
ta
nhận được
0E G s u Eu
0. Đặt
1
0x s A B Eu
, khi đó
0s A B x Eu
. Vậy
0E Fx s A B x
, hay là
0s A B E F x
0. Điều
đó có nghĩa là,
0 ,s A B E F
, hay cặp
,A B E F
không chính quy.
Do đó, hệ
'( ) - ( )Ax t B E F x t
0 không ổn định tiệm cận hay không chính quy.
Nghĩa là,
.V
Mặt khác, ta có, 11
0 sup
s
d G s G s

.
Vì là bé tuý ý, nên 1
sup
s
d G s

.
Do đó, 1
sup
s
d G s

.
Để ý rằng, hàm
G s
là hàm giải tích trên nửa mặt phẳng  . Do đó
theo nguyên lý cực đại,
G s
đạt cực đại tại
s
hay trên biên
i
.
www.VNMATH.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
20
Vậy, 1
sup
s i
d G s

.
Sau đây, ta sẽ thấy rằng, nếu
0s 
sao cho
0 sup
s
G s G s

thì
11
0 max ,s
d G s G s 
và ma trận 1
1 *
0 ,F s A B E uy
sẽ là ma trận “xấu” với
d
.
Trường hợp hàm
G s
không đạt được giá trị lớn nhất tại một điểm
hữu hạn
s
thì lập luận trên không cho phép ta tìm được ma trận “xấu” sao
cho
d
như trong bán kính ổn định của hệ phương trình vi phân thường
(ngay cả khi chúng ta lấy giới hạn khi
s
). Bây giờ, ta sẽ chỉ ra rằng, nếu
G s
không đạt được giá trị lớn nhất trên

thì không có một ma trận
nào thoả mãn điều kiện
d
và hệ
'( ) - ( )Ax t B E F x t
0 là không ổn
định tiệm cận.
Thật vậy, giả sử ngược lại, có một ma trận như thế.
Lấy
0 ,s A B E F 

x
là vectơ riêng của nó, nghĩa là,
0s Ax B E F x
0. Lập luận như trên ta thấy
1
1
0 0sup
s
G s G s d

.
Điều này là mâu thuẫn.
Hơn nữa, giả sử
ns 
sao cho
ns

lim sup .n
s i
G s G s

Giả sử
n
tương ứng với
ns
được xây dựng như trên, khi đó hệ
0'-Ax B E F x
= 0 là ổn định. (Để ý rằng, chúng ta luôn có thể giả sử tồn
www.VNMATH.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
21
tại
0lim
n
n
, vì nếu không, ta sẽ lấy một dãy con
kn
của dãy bị chặn
n
sao cho
0lim .k
k
nn
)
Vì tập hợp các ma trận sao cho cặp
,A B E F
có chỉ số 1 là mở
nên ta suy ra chỉ số của
0,A B E F
phải lớn hơn 1.
Bây giờ, ta xét một trường hợp đặc biệt, trong đó
mE F I
(nhiễu
không cấu trúc). Như đã thấy, bán kính ổn định với nhiễu không cấu trúc là
1
sup
s i
d G s

, trong đó
1
.G s sA B
Ta chứng minh rằng, nếu
, 1ind A B k
, thì ma trận hàm G(s) là
không bị chặn trên
i
. Thật vậy,
1
1 1 -1
00
W
00
r
m r
BsI
sA B T
IsU
G s
1
1 -1
1
0
W
0
r
m r
sI B
T
sU I
1
1
-1
1
0
0
W
0
r
k
i
i
sI B
T
sU
khi
s
Tính không bị chặn của
G s
kéo theo
d
= 0. Nghĩa là với những nhiễu dù
rất nhỏ, thì phương trình vi phân đại số với chỉ số lớn hơn hay bằng 2 có thể
không còn ổn định tiệm cận được nữa.
Nếu
, 1ind A B
, dễ dàng chứng minh được rằng ,
G s
là bị chặn
trên  , nghĩa là
d
> 0 nhưng có thể không tồn tại một ma trận “xấu”
nào, sao cho
d
.
Ta có định lý sau đây
www.VNMATH.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
22
Định lý 2.1.2.
i) Bán kính ổn định phức của (2.1.1) được cho bởi công thức
1
sup
s i
d G s

, trong đó
1
.G s F sA B E
ii) Tồn tại ma trận “xấu” :
d
khi và chỉ khi
G s
đạt được giá trị
lớn nhất trên
i
.
iii) Trong trường hợp
, mE F I d
0 khi và chỉ khi
,ind A B
1.
Một câu hỏi đặt ra ở đây, khi nào thì hàm
G s
đạt được giá trị lớn
nhất tại một giá trị hữu hạn
0s
? Chú ý đầu tiên là, câu trả lời phụ thuộc vào
việc chọn chuẩn của m vì
G s
có thể đạt được giá trị lớn nhất trong chuẩn
này nhưng không đạt giá trị lớn nhất trong một chuẩn khác.
Chúng ta có thể trả lời câu hỏi bằng cách khảo sát hàm số, nhưng ta
không thực hiện ở đây.
Các ví dụ
Trong các ví dụ sau đây, để đơn giản trong tính toán, chúng ta sử dụng
chuẩn maximum của vectơ và chuẩn ma trận tương thích.
Ví dụ 2.1.3.
Tính bán kính ổn định của hệ phương trình với nhiễu cấu trúc
'( ) - ( )Ax t B E F x t
0 trong đó là nhiễu và
1 0 1
0 1 1 ,
0 0 0
A
2 1 0
1 1 0 ,
1 0 1
B
1 1 1
1 1 1 ,
0 0 0
E
1 0 0
0 1 0 .
0 0 1
F
www.VNMATH.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
23
Ta thấy
,ind A B
2,
1
,
3
A B
. Do đó {A,B} là ổn định tiệm cận.
Tính toán trực tiếp, ta nhận được
1
3 1 3 1 3 1
1 1 1
.
3 1 3 1 3 1
3 1 3 1 3 1
s s s
s s s
s s s
G s F sA B E
s s s
s s s
s s s
Vậy,
3 1
1
3max ,
3 1
s
s
s
G s
s
đạt được max tại
0s
= 0 và
0G
3. Vì vậy,
1
.
3
d
Chọn
1
1
1
u thì 0 0G u G3.
Giả sử
* 0 1 0y
và ta có:
1
*
1
0 0
3
1
0 0 0 .
3
1
0 0
3
G uy
Hơn nữa,
det 2sA B E F s
0 khi
s
0.
Ví dụ 2.1.4.
Xét phương trình
'( ) - ( )Ax t Bx t
0, trong đó
1 2
2 4
A
và 1 2
.
2 0
B
Rõ ràng
,ind A B
1
,A B
-1 và
1
1
1 2
1 1
2 4
s
sG s sA B
www.VNMATH.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
24
vì vậy,
3 1
ax ,
4 2 1
s
G s m
s
không đạt được giá trị lớn nhất
trên

.
Hơn nữa,
3
lim
2s
G s
nên ta suy ra
2
3
d
.
Chọn 2 1
1
s i
u s
rõ ràng
u
1 và
G s u G s
khi phần thực
của
s
đủ lớn. Với
* 1 0 ,y
ta có 1
*G s uy
hội tụ về
2
0
3
2
0
3
khi
s
.
Dễ thấy,
8
det ,
3
sA B s
nghĩa là
,A B

phương trình
'( ) - ( )Ax t B x t
0. Tức là hệ
' '
1 2 1 2
' '
1 2 1
5
2 2 0,
3
4
2 4 0,
3
x x x x
x x x
có duy nhất nghiệm
1
2
0
0
x
x
vẫn ổn định tiệm cận, nghĩa là nhiễu ta vừa
chọn không “xấu”.
2.2. Liên hệ giữa bán kính ổn định thực và bán kính ổn định phức của hệ
phƣơng trình vi phân đại số
Trong mục này, chúng ta xét một trường hợp đặc biệt, khi
d d 
. Đối
với phương trình vi phân đại số, đây là một bài toán không đơn giản, vì dưới
ảnh hưởng của cặp ma trận {A,B}, nón dương
n
có thể không còn bất biến
www.VNMATH.com
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
25
đối với quỹ đạo của hệ, ngay cả khi A, B đều dương. Trong luận văn này,
chúng tui chỉ có thể giải bài toán với những giả thiết rất chặt.
Giả sử rằng
, , .m m mA B E F I
Định nghĩa 2.2.1.
i) Ma trận
ij
m mH 
được gọi là dương, ký hiệu H > 0, nếu
ij
0,
, .i j
ii) Ma trận
ij
m mH 
được gọi là không âm, ký hiệu
H
0, nếu
ij
0,
, .i j
iii) Giá trị tuyệt đối của ma trận
ij ,M m
ký hiệu
M
, là ma trận
ij ,m
tức là
M
=
ij ,m
với
1 2, ,..., .mx x x x
Trong m m ta định nghĩa quan hệ thứ tự như sau.
Định nghĩa 2.2.2.
i) Ma trận M được gọi là lớn hơn hay bằng ma trận N, ký hiệu là
,M N
nếu
M N
0.
ii) Số
, ax Re : ,A B m A B
được gọi là hoành độ phổ của
cặp ma trận {A,B}
Chúng ta xét phương trình
'( ) - ( )Ax t Bx t
0, (2.2.1)
trong đó A, B là...
Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status