Tài liệu Một số phương pháp điều khiển hệ Camera Robot doc - Pdf 95

Về một phơng pháp điều khiển hệ Camera-robot
bám mục tiêu sử dụng mạng Nơ ron

Bùi Trọng Tuyên Phạm Thợng Cát
Viện Vật Lý Viện Công Nghệ Thông Tin
Email: [email protected] Email: [email protected] Tóm tắt nội dung

Báo cáo trình bầy khả năng ứng dụng mạng nơ ron trong điều khiển hệ thống bao gồm tay máy có gắn
camera để quan sát và bám theo mục tiêu. Phơng thức điều khiển dựa trên nguyên lý tuyến tính hoá tín hiệu
ảnh phản hồi. Mạng nơ ron đợc đa vào nhằm giảm nhẹ tác động của những thành phần ngẫu nhiên, cho
phép sử dụng các tham số có độ chính xác hạn chế vào trong mô hình động học của hệ thống. Mạng nơ ron
đợc xem nh là một yếu tố thích nghi bổ xung vào hệ thống điều khiển để tăng cờng khả năng của chúng.

An application of Neural Networks based visual servoing for hand-eye robot tracking target is
introduced in this paper. The used control method bases input-output feedback linearization technique. The
Neural Network is introdeced to compensate model uncertainties of overall system. It suffers if the parameter
values are inaccurate in the model of dynamics, the presence of image distortions and time varying. Adding
the NN controller as adaptive item in the control system is one effective way to compensate for the ill effects
of these uncertainties and in fact it can in some cases be used for parameter estimation.

1. Giới thiệu mô hình hệ thống điều khiển Rô bốt sử dụng CAMERA

Công việc sử dụng các hình ảnh thu nhận đợc bằng camera trong quá trình điều
khiển Rô bốt (visual servoing) là một hớng nghiên cứu đang đợc quan tâm trong lĩnh vực
điều khiển Rô bốt. Điểm chính yếu của kỹ thuật này là những thông tin hình ảnh nhận đợc

đợc từ ảnh (Position_based servoing control). Trong điều khiển position-based, các đặc
trng đợc trích lọc ra từ ảnh kết hợp với mô hình hình học của đối tợng (giới hạn trong
các đối tựơng là vật rắn) để xác định vị trí của đối tợng trong hệ trục toạ độ của camera.
Còn sai lệch giữa tín hiệu phản hồi vị trí của mục tiêu và vị trí mong muốn đợc tính toán
trong không gian làm việc (hệ toạ độ Đề các).

o Điều khiển trên cơ sở sử dụng trực tiếp ảnh (Image_based servoing control). Với
dạng điều khiển này, tín hiệu sai lệch đợc định nghĩa và tính toán trực tiếp ngay trong
không gian tham số đặc trng ảnh.

Trong mỗi loại lại có thể chia thành hai nhóm dựa theo phơng pháp điều khiển,
một là thực hiện quá trình điều khiển theo hai phase riêng biệt quan sát và chuyển động
(look-and-move), loại thứ hai là sử dụng điều khiển trực tiếp (direct visual servoing). Nếu
hệ thống điều khiển phân cấp chỉ sử dụng tín hiệu ảnh do camera cung cấp để thiết lập các
giá trị đầu vào cho các bộ điều khiển của từng khớp và đồng thời sử dụng các vòng phản
hồi tại từng khớp để giữ ổn định chuyển động của Rô bốt thì đó là hệ điều khiển kiểu
look-
and-move. Ngợc lại hệ thống điều khiển trực tiếp loại bỏ hoàn toàn vòng phản hồi tại từng
khớp, bộ điều khiển visual servoing tính toán tín hiệu điều khiển trực tiếp cho các khớp, nó
chỉ sử dụng các tín hiệu phản hồi bằng hình ảnh để giữ ổn định chuyển động của Rô bốt.
Hình 2a. Cấu trúc điều khiển position-based look-and-move

yếu sử dụng trong kỹ thuật điều khiển Rô bốt) các thông số đặc trng ảnh thờng là toạ độ
của các điểm đặc trng trên mặt phẳng ảnh [u, v] , khoảng cách giữa các điểm và tham số
của các đoạn thẳng trên ảnh [, ] , trong tâm và diện tích (S), Tập hợp các véc tơ đặc
trng ảnh tạo thành không gian thông số đặc trng ảnh ký hiệu = [u
1
v
1
,
1

1
S
1
S
2
]. 2. Sử dụng mạng nơ-ron trong điều khiển hệ Robot-camera
bám mục tiêu

Mô tả khái quát hệ thống Robot-camera và bài toán điều khiển camera bám theo đối
tợng bằng sử dụng tín hiệu đặc trng ảnh

Sơ đồ khối hệ thống chỉ ra trên hình 3 trong đó có một camera đợc gắn ở đầu của
tay máy có m khớp nối, sử dụng để thu nhận hình ảnh của đối tợng quan tâm. Các tham
biến X
c
và X
0

hình ảnh mong muốn. Mô hình động học của Robot

Động học của một robot có m khớp nối đợc mô tả bằng một hệ phơng trình vi phân
nh sau:

),()(

&&&
hH +=
(1)

Trong đó
T
m
] [
21

= là véc tơ góc của các khớp nối,
T
m
] [
21

= là véc tơ mô men
tơng ứng với các khớp. H(

) là ma trận quán tính [m x m] phần tử là các hàm số phụ

&
,
H
ình 3. Hệ thống điều khiển tay máy có gắn camera
Đặt các biến trạng thái là vector góc

và vector vận tốc góc

&
ta có phơng trình
trạng thái của robot nh sau:











+

Mô tả trạng thái của hệ thống điều khiển phi tuyến cho camera gắn trên tay máy

Trong báo cáo này trình bày một hệ thống điều khiển phi tuyến trên cở sở tuyến tính
hoá các tín hiệu đặc trng ảnh đợc phản hồi trực tiếp từ đầu ra trở lại đầu vào, thêm vào đó
việc bù trực tiếp ảnh hởng quá trình động học của robot cũng đợc sử lý có hiệu quả bằng
việc mở rộng thuật toán tính mô men thực cho các khớp.
Hoạt động của hệ thống có thể hình dung nh sau: khi camera gắn trên tay robot hớng
về đối tợng và thu nhận đợc ảnh của đối tợng nếu các khớp của robot thực hiện một
phép quay
T
m
] [
21

=
sẽ làm cho vị trí của vật trên ảnh cũng bị thay đổi theo.
Gọi

là véc tơ đặt trng ảnh của đối tợng đợc định nghĩa trong không gian ảnh 2
chiều (2D) có 2n chiều tơng ứng n đặc trng đợc chọn và


là sự thay đổi vi phân của
đặc trng ảnh khi vị trí và hớng của camera thực hiện một dịch chuyển vi phân
X
c
,
,

là ma trận Jacobian của robot ta ký hiệu J(


,
) = J
feature
J
robot
. Trong bài toán
điều khiển robot bằng hình ảnh (visual servoing) ma trận J(


,
) có thể đợc xác định bằng
nhiều phơng pháp khác nhau tham khảo thêm trong tài liệu [2], trong mô hình điều khiển
đợc trình bày trong bài báo này, đối với từng cấu hình của robot và camera cụ thể thì ma
trận J(


, ) sẽ đợc xác định bằng phơng pháp giải tích.
Giả thiết rằng ta đã xác định đợc ma trận J(


, ) và ma trận đó không bị suy biến
(đủ hạng) với một đối tợng không chuyển động. Trong trờng hợp đó đặc trng ảnh của
đối tợng chỉ còn phụ thuộc vào các biến trong của robot
)(

def
= . (5)

Gz



=
(8)
với:










=

hH
f
1

&
,






J
def
=

)(
)(
1
1


à



à

à
++


=








+

(12)
Hoặc theo dạng:


=
+

z
&&
(13)
Trong đó

hGJHGL
1



=


à
&

1
= GJHE (14)


=
1
)(

bố trong tài liệu [6], [7], [8] để áp dụng vào mô hình điều khiển của mình. Sơ đồ hệ thống
điều khiển đợc phát triển có ứng dụng mạng nơ ron cho trong hình 4.
Hình 4. Sơ đồ hệ thống điều khiển tay máy gắn camera có sử dụng mạng nơ ron.

K
P
K
d


Tay máy
gắn
Camera




)(t

&
)(t

)(tz
)1( tz
)2( tz

Mạn

d

)(t

G
Nh đã trình bầy ở trên, các véc tơ z đợc sử dụng thay thế cho tín hiệu phản hồi của
đặc trng ảnh. Để có thể tính đựợc mô men

trong sơ đồ ở hình 4 các đại lợng

,


đợc xác định theo công thức (15). Tuy nhiên trong quá trình tính toán

,

theo công
thức (15) phải sử dụng các giá trị gần đúng
)(


H và ),(


&
h

định nh sau:


&
&
GJKGJKzKzK
ddpdp
== )( (16)
Các ma trận
K
p

K
d
chọn là các ma trận hệ số xác định dơng.

Khi cha quan tâm đến mạng nơ-ron thì mô men điều khiển

đợc tính


=


+

(17)
thay (16) vào (17) ta có

=


+
zKzK
dp
&
=


)

( +
z
&&

)(

zKzKzz
pd
++=+
&&&&&


Rút ra đợc phơng trình đặc trựng của hệ kín nh sau:

)(

)(
1

+=++=

=
thông qua
việc lựa chọn các ma trận hệ số
pd
KK ,
.
Nh đã trình bầy ở trên mạng nơ ron đợc đa vào để bù cho những tham số của hệ
thống xác định không chính xác. Mạng nơ ron sử dụng là mạng truyền thẳng (feedforwork
neural network) có cấu trúc hai lớp, lớp ẩn (hidden layer) và lớp đầu ra (output layer) với
đầu vào là 3 vectơ z tại các thời điểm z(t), z (t-1.

T), z (t-2.

T) và chu kỳ trễ (delay-time
step
T) là chu kỳ lấy mẫu của thông tin ảnh hồi tiếp. Các nơ-ron ở lớp ẩn có hàm kích
hoạt là sigmoid (sigmoid activated function). Đầu ra của mạng
T
m
] [
21

= có số nơ
ron tơng ứng số khớp nối của robot và hàm kích hoạt là tuyến tính.
Sau khi đã bổ xung mạng nơ ron thì mô men tại các khớp nối đợc tính nh sau:

)(t
new

=



) -

(23)
Mục đích của việc bổ xung mạng nơ ron là nhằm giảm sai số

về không. Do vây

đợc
xem nh là chính sai số của đầu ra mạng nơ ron và đợc sử dụng để huấn luyện mạng. Giá
trị lý tởng của

là tại


= 0 và là:

=

-1
(



&&
+


).

=



(25)
vì thực tế theo (23) thì
ww
v
T
T


=



. Thuật học lan truyền ngợc (back-propagation) đợc sử
dụng để cập nhật các giá trị trọng mới, thuật học đợc cải tiến bằng việc bổ xung thêm một
thành phần gọi là momentum đợc dẫn ra trong công thức (26).

)1()( +


= twv
w
tw
T




[3]. Martin Jọgersand and Randal Nelson. On-line Estimation of Visual-Motor
Models using Active Vision, In Proc. ARPA Image Understanding Workshop 96,1996.
[4]. Koichi Hashimoto and Hidenori Kimura. LQ Optimal and Nonlinear
Approaches to Visual servoing
[5]. K. Hashimoto, T. Ebine, and H. Kimura. Visual Servoing with Hand-Eye Manipulato
Optimal Control Approach
,
IEEE Trans. Robot. Autom. 1996
[6]. Seul Jung and T.C Hsia,
A Study on Neural Network Control of Robot Manipulators
[7]. Seul Jung and T.C Hsia, On-line Neural Network Control of Robot Manipulators,
International Conference on Neural Information Processing, vol. 3, 1663-1668, 1994.
[8]. Seul Jung and T.C Hsia. A New Neural Network Control Technique for Robot
Manipulator, Robotica, vol.13, pp 477-484,1995
[9]. Bùi Trọng Tuyên and Phạm Thợng Cát.
Pose-estimation of object in 3D virtual
space using an image received by camera applying to Robot-visual Servo Control,
Journal of Science and Technique, Military Technical Academy of Vietnam, pp 31-42,
No. 97 (IV-2001).
[10]. Somlo - B.Lantos - P.T.Cat. Advanced Robot Control,
Akadémia Kiadó, Budapest, 1997.


Nhờ tải bản gốc

Tài liệu, ebook tham khảo khác

Music ♫

Copyright: Tài liệu đại học © DMCA.com Protection Status